
1.
2.
3.
4.
5.
6.
7.

Sakai Admin Guide - Operations Best Practices
Operations Best Practices

Introduction

This section is intended to bring together a handful of best practices not covered elsewhere in the admin guide. These are not
canonical, but represent the range of techniques production sites use to manage the uptime and performance of their sakai
installations.

Maintenance Schedules

Although continuous availability is the ultimate goal, many sites find it useful to announce routine daily and/or weekly maintenance
times to ensure that routine maintenance can be performed in an orderly fashion. A basic approach is to schedule a short daily
window, and a longer window that occurs once a week. The daily maintenance window is scheduled for 15-30 minutes each day, which
can be used for minor updates, restarts, log rotation, et cetera. The weekly maintenance window typically occurs on the slowest day of
the week, and is long enough to allow for patches, cold database backups, version updates, hardware migrations, etc. Both the daily
and weekly window should either be based on clearly observed usage patterns among your users, or on the scheduled down time of
systems on which your installation depends (database, distributed storage), et cetera.

Another useful feature is to set up a separate apache installation that is the failover node for your load balanced cluster. This apache
instance should present a page that reminds users of the published maintenance schedule, and also serves as a notification mechanism
in explaining unexpected outages.

Hot Deployment of Changes

If you have a load balanced installation of Sakai, application changes can be hot deployed, although there are caveats. If you wish to
take an application server out of the load balanced pool and then take it down, you must keep in mind the sticky session timeout for
your sakai installation, and must carefully monitor the sticky sessions assigned to a node before shutting it down. Here's an example
methodology for hot deployment of changes:

remove the node from the load balanced pool while continuing to allow current active connections
monitor sticky sessions until all users are off of the node
take down the node
patch or otherwise update the node
bring the node up and test individually
return the node to the load balanced pool
continue the process with the next node

If your session timeout is longer than an hour, you can imagine that it may take some time to ensure that all traffic is off of a node
before restarting. If you choose to shorten the process by shutting down the node once the load falls below a certain threshhold, keep
in mind that any users who remain connected to a node when it shuts down may lose their work in progress, including assessments.
This is another benefit of clearly advertising your downtime schedule, it gives you a safer time in which to introduce changes.

Automated Deployment

If you are deploying Sakai with local customizations and configuration changes (as most sites do), you may find a benefit in creating
an automated deployment process. This process would do something like:

download the base version of Sakai from subversion
overlay any local tools and code changes
test the build and notify an administrator if there are failures
stop Sakai
deploy the updated build
restart Sakai

The downloading and overlaying of code can be managed to a large extent by establishing your own subversion repository and using
the svn:externals functionality to create a combined source directory. For more information on svn:externals, see:

The Subversion Documentation

An example of an automated build process was detailed in David Haines' talk at the 5th Sakai Conference in Atlanta:

Your downtime schedule should be clearly advertised on both the gateway site (which users see before logging in) and in
each user's "My Workspace" site.

This is critical to establishing the expectation among end users that the system will be unavailable during scheduled
maintenance times.

http://svnbook.red-bean.com/en/1.0/ch07s03.html

http://bugs.sakaiproject.org/confluence/display/CONF06/The+University+of+Michigan+Build+Process

Security

Security updates are not publicly announced until there has been enough time for existing installations to address the problem. All
security notifications are coordinated through . For more information, see the "Anthony Whyte Sakai Admin Guide - Joining the

" section of this document or the " " section of the Community Documenting your Sakai instance as part of the Sakai community
SakaiPedia.

Patches

You may find that your version of Sakai suffers from a known bug for which there is a patch. Applying a patch to a sakai installation
requires a source build and the standard patch utility. The steps are typically as follows:

Obtain the patch or updated source
Shut down your sakai installation
Remove any old versions of the affected project from $CATALINA_HOME/shared/lib, $CATALINA_HOME/components and
$CATALINA_HOME/webapps.
undeploy the affected component using the for Maven ("maven sakai:undeploy" from the component's source Sakai plugin

.directory)
build and deploy the affected components using the for Maven ("maven sakai" from the component's source Sakai plugin
directory).
start your sakai installation

Monitoring

Many institutions choose to use programs like and to monitor the health of their Sakai installation and notify key Nagios Big Brother
staff. These programs typically verify that all processes are running, and that Sakai is listening on the desired ports. There are also
scripts to monitor the contents returned by a web request. One approach is to have a simple tool installed within Sakai that's
accessible without a password return a summary of the status of the internal health of a Sakai install (database connections, memory,
etc.).

If you are running in a load balanced installation, your load balancer may also offer tools to monitor the health of a node and either
reduce the amount of load directed to the node over time, or flag the node as unavailable and redirect all traffic from that node. Where
possible, you should tie your load balancer's monitoring to something that reflects the internal health of Sakai rather than whether it is
simply up and perhaps not responsive. One suggestion would be to use a internal health check script as mentioned above and tie the
load balancer to that. Another would be to test the response time of a node and flag it as down if it responds too slowly.

Notification

A key practice of any monitoring system is to quickly notify staff who can attend to the problem. Some institutions use a rotating on-
call system where one staff member responds to all alerts during a given time period. Some institutions use a system in which the first
person to respond to the problem indicates to everyone else that they are working on the problem. Some institutions with dedicated
operators use a call tree that begins with first responders and continues through the organization.

Proactive review

It's also good practice to review the errors recorded in catalina.out regularly and compare to known bugs to help isolate configuration
changes or previously unseen bugs. This is important as an ongoing activity, and as a part of quality assurance and change
management.

http://bugs.sakaiproject.org/confluence/display/CONF06/The+University+of+Michigan+Build+Process
https://confluence.sakaiproject.org/display/~arwhyte
https://confluence.sakaiproject.org/display/DOC/Sakai+Admin+Guide+-+Joining+the+Community
https://confluence.sakaiproject.org/display/DOC/Sakai+Admin+Guide+-+Joining+the+Community
http://www.dr-chuck.com/csev-blog/000146.html
http://www.dr-chuck.com/csev-blog/000146.html
http://nagios.org/
http://www.bb4.com/

	Sakai Admin Guide - Operations Best Practices

