
1.

2.

3.

4.

5.

6.

7.

Sakai Jira Guidelines
Sakai JIRA Guidelines

Sakai JIRA Guidelines
Summary

Basic Workflow
Diagram

Details
Create Issue Detailed Instructions
Definitions

Issue Type
Status
Resolution
Branch Merge Status
Version

Further notes on Version Numbers
Maintenance Branch Version Numbers

Priority
Environment
Description
Security Level

JIRA Notifications
Jira Spring Cleaning

Sakai uses software for issue management. It's used to track a variety of issues, including bug reports, suggestions for Atlassian's Jira
new functionality, tasked work, and community contributions. Outlined below are the general practices, procedures, and definitions
adopted by the Sakai community for using Jira.

You can search and view content in Jira without an account, but are required to have one to comment or create issues. Jira
accounts are available through (Jira and Confluence share accounts).self-registration
People who want to submit issues, after creating their account, should review the .Workflow
If you have questions regarding this tracking software (Jira), please send them to .jira-admins@collab.sakaiproject.org
For Developers: | | Maintenance Branch Guidelines Feature Branches Jira Branches
Sakai Community Servers are accessed from here (you'll test on them before creating a community Jira: http://nightly2.

).sakaiproject.org/

Summary

Basic Workflow

Anyone with a JIRA account creates an Issue (please see first)#Create Issue Detailed Instructions
Issue is automatically assigned to a statusAwaiting Review

A Sakai Core team member, and/or anyone who wants to participate in "JIRA Triage" weekly calls, verifies the issue for
accuracy (i.e. is it an actual issue) and completeness of details.

Complete and valid issues are set to status and to a user or group (e.g. Samigo Team or Sakai Core Open assigned
Team) who can resolve it.
The team member may resolve the issue as , , or if appropriate (see Duplicate Incomplete Cannot Reproduce #Resoluti

).on
It may also be set to if it doesn't contain enough information to for work.Awaiting Information Open

Once Open, developers ideally pick up the work and assign themselves to it as "Assignee." When they begin work, they selects
and begin to work on the issue (as time and priorities allow)Start Progress

The Assignee selects if they are not going to work on the issue anymore for a few days and it is not Stop Progress
resolved

The Assignee sets the issue to with the relevant when work is completedResolved #Resolution
For tasks, if there is nothing explicit for the QA team to test, then the issue is without testing.Closed

The QA team (potentially you!) selects and begins verifying the issueStart QA
QA team member selects if they are not going to complete the testing on the issue within a short time frameStop QA

The QA team verifies resolution of the issue and adds a comment with details of the testing results and process.
If verification fails, then it is for further work (automatically re-assigned to the user who resolved it)Reopened
If verification succeeds then QA marks the status as (indicating it has been)Verified Tested

The Release Manager merges the issue (if it is a bug) to previous supported and affected releases
The associated version merge status is set to see)Resolved (#MergeStatus
The issue is by the Release Manager when the last merge has been completedClosed

Diagram

http://www.atlassian.com/software/jira
http://jira.sakaiproject.org/jira/secure/Signup%21default.jspa
mailto:jira-admins@collab.sakaiproject.org
https://confluence.sakaiproject.org/display/REL/Release+Practice+Guidelines#ReleasePracticeGuidelines-MaintenanceBranches
https://confluence.sakaiproject.org/display/REL/Release+Practice+Guidelines#ReleasePracticeGuidelines-FeatureBranches
https://confluence.sakaiproject.org/display/REL/Release+Practice+Guidelines#ReleasePracticeGuidelines-JiraBranches
http://nightly2.sakaiproject.org/
http://nightly2.sakaiproject.org/

1.

2.

3.
4.

(Exported from JIRA Sakai Workflow on 31 March 2012 - AZ)

Details

Create Issue Detailed Instructions

The Sakai community is encouraged to report issues and post feature requests in Jira. The Community maintains a set of servers for
testing. If you find an issue on your own institution's Sakai servers, please don't report that to the community. Rather, each
organization running Sakai is expected to have its own issues list. , However should an issue on your institutions' Sakai be found, AND

. Here's how!that issue also exists on one of the community's servers, it should be reported to the community

You search JIRA to see if the issue already exists ()Sakai Jira Search
Search strategies include searching for a particular component, sorting by update date, and exporting as an MS Excel
file (in Views)

You might also check the archives.sakai mailing lists
Searching may help if you get too many resultssakai-dev archives

If you're not sure if the problem is a bug, then send a note to the first to asksakai-dev mailing list
You then create an issue in Jira of the appropriate #Issue Type

The should be set based on where the problem appears to exist. Do not use the Performance component component
however. Only use a 'Performance' label to flag performance related issues so there is a consistent way to filter these
issues across projects.
The should be left as -Automatic-Assignee
The should be set to the of the instance of Sakai being used.Affects Version released version

http://jira.sakaiproject.org/secure/IssueNavigator.jspa
https://groups.google.com/a/apereo.org/forum/#!forumsearch/Sakai
https://groups.google.com/a/apereo.org/forum/#!forum/sakai-dev
https://groups.google.com/a/apereo.org/forum/#!forum/sakai-dev

4.

The should be left set to the default of Unknown. The project teams will set the Fix Version once they have Fix Version
had time to review the issue and estimate when they believe they will be able to address it.
As much of the following information should be included as possible (to avoid the issue being closed as incomplete)

Sakai version
(bugs) (detailed and step by step)Steps to reproduce
If disambiguation is necessary, include and Expected Results Actual Results
Environment details (DB type and version, tomcat version, OS type and version, Browser and version, etc.)
(bugs) URL to the page where the error occurs
(bugs) Stacktrace (traceback) if available
(bugs) relevant portions of the server logs (do not attach your entire logs, we do not have time to read through
1000s of lines of logs and figure out where the relevant parts are)
(bugs) or showing the errorScreenshots Screencasts
(feature) Use cases and detailed requirements
The desired resolution

For all issues, please provide a simple Summary and Description that can be understood by all in the community, not just yourself or
developers. If you need to include some techno-babble, in addition to the plain language, for other developer types to understand the
full details that's fine, but consider placing it in a comment on the issue.

If you need to include a large piece of information in an issue, such as a stack trace, please do not put it in the Description field.
Instead, add it as an attachment or a comment. (This makes it a lot easier to view and parse issues in most browsers.)

Sometimes developers may uncover bugs in your own code and need to create a Bug issue. If you think the bug does not affect past
versions of Sakai and only exists in the code you are actively working on in trunk, then use the tentative release version that trunk will
become as the Affects Version (, 2.6 [Tentative]). Or, if you're working in a Jira branch, then use "branch" as the Affects Version.e.g.

Definitions

Issue Type

Issue
Type

Definition for Sakai

 Bug An error in design or implementation which directly impedes a user from achieving their expected result.

Task

A new capability being added to Sakai.

Feature
Request

A desired capability, for inclusion in a future release of Sakai; ideas that come with resources interested in implementing
them are more likely to be developed than those offered with the hope that someone else will step forward to do the work.

Contrib
uted
Patch

A community-contributed patch to a particular version of Sakai. The origin of such issues may lie in Bugs or Feature
Requests which Sakai has not yet evaluated for implementation. Under such circumstances a linked issue is generally
created by cloning the original issue in order to track Sakai's work on the issue. [Use at your own risk!]

Branch

An experimental branch of code, which may or may not be merged back into the main code after the experiment
completes; identified in SVN by a branch named with the Jira Key.

Bugs
Important to create a detailed description on how to recreate the bug. Please include a step-by-step way to reproduce
the bug in the Description field.

Tasks
Tasks are used by project teams to track the addition of or changes to functionality.
It is not necessary to set an Affects Version for a Task.

Contributed Patches
Issue is vetted for accuracy and completeness of information.
The issue is evaluated by the appropriate project team, just like a Feature Request or Branch, for inclusion in a future
release of Sakai.

In some cases, a Contributed Patch may run counter to the Sakai design and cannot be incorporated, and
maybe marked as Won't Fix and an explanation as to why provided. In this case, the contributor of the Patch
may choose to continue developing the patch for future versions of Sakai.

Until the patch is integrated in Sakai, the community encourages the contributor to be responsive to comments and
feedback provided by other users of the patch and to continue to update the patch to current versions of Sakai

Feature Requests
Issue is vetted for accuracy, completeness of information, relevance to Sakai's overall design, etc.

A good Feature Request should explain clearly what a user is trying to achieve. Use cases and scenarios can be
helpful in communicating that.

1.
2.

1.
2.

1.

2.

Assigned to appropriate Project Team or Working Group lead, They will evaluate and discuss such issues periodically,
when the group reaches an appropriate point in the release cycle to adsorb community input.

If the decision is made to not address the issue, then it should be resolved as "Won't Fix" with appropriate
comments.

When a project team is ready to address the issue, it should be Moved to a Task and an initial estimate of the Fix
Version set.

Status

Status Definition for Sakai

 Awaiting Review Issue is waiting for investigation.

 Open Issue is valid and ready to be worked on.

 In Progress Issue is actively being worked on.

 Reopened Issue was thought to be resolved, however, it did not pass QA and needs further work.

 Resolved Issue has been addressed and is ready for QA testing.

 Tested Issue has been tested and has passed. Ready for merging.

 Closed Work on issue is complete, no other activity.

(Awaiting Review)
Contributed patches should receive priority treatment.
The issue should be to other related issues. linked
Check the is to a user or group (e.g. Samigo Team or Sakai Core Team) who can resolve it. assigned
Adjust the depending on overall project and release goals Priority
Other attributes should be changed as needed, (, , , Components Affects Version , Security Level Original Estimate
etc.)

(Open)
Open tickets should be worked on within 90 days or assigned back to Unassigned
Open tickets which have seen no activity in 180 days will be moved back to statusAwaiting Review

(Resolved) - General
Resolved tickets which have had no activity in 180 days will be Closed without testing
Details in #Resolution

(Tested) QA is complete on this ticket.
(Closed) No other activity should or will happen on this ticket

Resolution

Resolution Definition for Sakai

Unresolved Issue is under consideration and/or actively being worked on.

Fixed Issue has been addressed through changes to the design or code. When viewing an issue, the "Subversion Commits"
tab provides specific details regarding code changes.

Won't Fix Issue will not be addressed because it does not match project goals.

Non-Issue Issue turned out not to be a problem with Sakai.

Duplicate Issue is a duplicate of a previously submitted issue. A link to the other issue is added so that progress on the issue
can be easily accessed.

Incorporated Issue has been incorporated into another issue. A link to the other issue is added so that progress on the issue can be
easily accessed.

Incomplete Not enough information has been provided to identify the issue.

Cannot
Reproduce

Issue cannot be reproduced and more details or steps need to be added before it can be reopened.

No
Resources

Issue has no patch provided and there is nobody available to fix the issue at this time.

(Fixed) Developers should do the following when fixing issues:
All commits to subversion include the corresponding JIRA number as the first word in the commit message. For must
example: svn commit -m "SAK-1234 fixed the uncaught NPE"

2.
3.
4.

5.
6.
7.
8.

1.
2.

3.

1.
2.
3.
4.

1.
2.
3.
4.

1.
2.

3.

1.
2.
3.

1.
2.
3.

If you are implementing a Feature Request or Contributed Patch, first use to covert the issue type to a TaskMove
If working in a branch, first merge your branch to trunk before resolving the issue
Update to the next major release version, do not use alpha or beta releases (e.g. use 2.8.2, 2.9, 2.10 : do Fix Version
NOT use 2.9b07, 2.9a1, trunk)
Add a Test Plan in the " " field. May be found by clicking the Edit issue button.Test Plan
Add relevant " "Release Notes
Check the boxes, if appropriate, for and/or Property addition/change required Conversion Script Required
Selects for previous supported and affected releases (e.g. 2.8 Status) for bugs only (features are NOT merged Merge
back)

(Reopened) If QA reopens an issue:
QA sets the Affects Version to the version tested
In the process of verifying the issue, if you discover a different problem, create a new issue to capture it, rather than
re-opening the current issue and re-using it; reserve re-opening only if the original problem is still present.
Some issues can not be easily verified and may require special testing conditions or input from developers.

(Duplicate) If it duplicates a previous issue, then the newly opened issue is:
Linked to the original issue as "duplicates"
Commented with a note to look at the linked-to issue to track further progress
Closed with a Resolution of "Duplicate"
Fix Version and should be set to "Unknown"

(Incorporated) If it is incorporated into a previous issue, then the newly opened issue is:
Linked to the original issue as "incorporated by"
Commented with a note to look at the linked-to issue to track further progress
Closed with a Resolution of "Incorporated"
Fix Version and should be set to "Unknown"

(Non-Issue) If it turns out that the issue was the result of a mis-understanding of how Sakai operates, then:
An effort is made to clarify the situation.
If the mis-understanding does not suggest a design flaw, then it is Closed with a Resolution of "Non-issue"; otherwise,
the design flaw could be captured to Bug or Feature Request.
Fix Version should be set to "Unknown"

(Incomplete) If insufficient information is provided to describe the issue, then:
A comment is added to ask the user to include the needed information (should list the information needed)
The issue is closed with a Resolution of "Incomplete"; issue can always be Reopened.
Fix Version should be set to "Unknown"

(Cannot Reproduce) If the issue cannot be reproduced on one of the QA test servers, then:
A comment is entered to indicate what was attempted to reproduce the issue (e.g. "followed steps in issue")
The issue is closed with a Resolution of "Cannot Reproduce"; issue can always be Reopened.
Fix Version should be set to "Unknown"

Branch Merge Status

Each branch has it's own status of the fix for it's branch. The field labels look like 2.9.x Status, 2.8.x Status, etc. These statuses do not
tie directly into the overall ticket status and only the Branch manager should update this status.

Resolution Definition for Sakai

None No merge needed for this ticket (i.e. only should be applied to
trunk or whereever it was committed)

Merge The code changes related to this ticket should be merged into
the x branch.

Resolved The code changes have been merged

Closed <needs definition. perhaps a superfluous status?>

Won't Fix Means the merge to the branch cannot be done and will not
be done (usually a reason is given in the comments - this is super
rare)

Version

Each Jira issue has an Affects Version and a Fix Version. Generally speaking Sakai uses these values to indicate:

Affects Version - Version(s) in which an , and should be a released version of Sakai. Do not use unreleased issue is observed
versions.

If you find an issue in trunk, and it is a problem that only affects trunk and not previous releases, then please use the
next planned release as the Affects Version. If the issue also affects released versions of Sakai, then please include
those versions too.

Fix Version - Version(s) for which the issue is (for Resolved/Closed and Fixed issues). Leave blank for Unresolved actually fixed
issues.

Further notes on Version Numbers

Alpha, Beta, and RC tags () - After a release is made, the interim alpha, beta, and release e.g., alpha03, beta02, RC01
candidate versions are merged into the released version. For example, 2.6.0-alpha01, 2.6.0-alpha02, 2.6.0-beta01, 2.6.0-
rc01, etc. would be merged into 2.6.0. The merging is necessary for keeping it simple to search, filter, and view issues for
released versions of Sakai; however, the original version numbers are still associated with each issue in the database, if there
is a need to extract such information later on.
Maintenance Branch versions as Affects Versions (, 2.3.x, 2.4.x) You should generally avoid using maintenance branch e.g.
version as an Affects Version, unless you are sure an issue does not affect past releases on that branch. This is important
because branch versions are moving targets; what affects 2.5.x one day will not necessarily affect it in the future, after the
issue is fixed.
Maintenance Branch versions as Fix Versions (, 2.3.x, 2.4.x) - Generally the only branch version a developer needs to be e.g.
concerned with is the next major release version for changes they are checking in to trunk. Only the Branch Managers should
worry about using maintenance branch versions or beta versions as Fix Versions. They will use maintenance branch versions
only when the fix is actually checked-in to the branch. It should not be used as an indication that one would like a fix merged
(rather one should set the maintenance branch's status to "Merge".)
SAK Experimental Branches (, branch) - Use the generic "branch" version as the Fix Version when working on subtasks i.e.
under a SAK Experimental Branch. If and when the branch is merged into trunk, please remember to update the Fix Version
appropriately (generally this will mean changing it to the next major release at the time the branch is merged to trunk.)
Developers- Can only use actual release version where the fix is made as the Fix Version and indicate it should be merged
using the special "Merge" fields (as discussed in the Sakai Core team).

For instance if the fix is made in trunk, and trunk is 2.10-SNAPSHOT the fix version should only be set to
2.10 [tentative]

Branch Managers - Can use any version which is appropriate including beta or alpha versions (which are indicators of when
something was merged and what it was merged into).

Maintenance Branch Version Numbers

A ".x" version is used to track issues relating to maintenance branches. For instance, 2.5.x is the version number representing the 2.5
release's maintenance branch.

If someone is basing their deployment on a maintenance branch, then there is the potential for confusion when using it as Affects
Version, since the maintenance branch is a moving target. When reporting issues, it is important to indicate the revision number in the
issue, so that folks know to which revision of the maintenance branch you are reporting the issue against. Even better is to determine
if the issue affects the last maintenance release, and, if it does, use that as the Affects Version instead.

Priority

 (Updated for Sakai 12, inspired by Drupal priorities)

The Priority field in Jira is used by Sakai to reflect a combination of issue characteristics, including:

Number of users affected
Resources required to resolve

In practice, the Jira Priority field is utilized by Sakai at two times: during prioritization of feature requests/branches/contributed
patches for implementation or merging, and when making decisions on what will actually appear in a release. Initial priorities, when an
issue is first reported, may be changed to reflect needs as a release moves forward and priorities evolve. Every issue comes in as
Major priority and each Jira is triaged to determine the appropriate priority.

As a release date approaches, priorities will also be adjusted - and lowered, if necessary - to reflect the decreasing availability of time
and resources.

Priority Basic Definition
for Sakai

Impact on previous releases Examples

 Blocker
Release will not be
completed until
issue is resolved.

Backported at least 2 major
version (if applicable/affects).
Potentially more than 2.

Render a site unusable and have no workaround.

Cause loss/corruption of stored data. (Lost user input, e.g. a failed
form submission, is not the same thing as data loss and in most
cases is major).

Expose serious security vulnerabilities.
Errors in grading calculations affecting most students/instructors.

 Critical
Issue will most
likely be resolved
for release.

Backported 1 major version
back. 2 if applicable/affects and
if no code conflict.

Interfere with normal site visitors' use of the site (for example,
content in the wrong language, or validation errors for regular
form submissions), even if there is a workaround.

Trigger a Java error through the user interface, but only under rare
circumstances or affecting only a small percentage of all users,
even if there is a workaround.

Render one feature unusable with no workaround.

 Major
Issue should be
resolved for release.

Backported 1 major version
back if no code conflict Admin- or developer-facing bugs with a workaround.

Bugs for site visitors that do not interfere with site use, for
example, visual layout issues.

 Minor
(Previously
also Trivial)

Issue may be
resolved for release.

Not backported
Used for cosmetic issues that do not inhibit the functionality or
main purpose of the project.

Environment

A description of the Sakai environment in which the issues was encountered, , web browser, operating system on which e.g.
Sakai is installed.
For QA participants this is a good place to note on which test server the issue occurred (, MIT Stable HSQL, MIT Stable e.g.
Oracle, MIT Stable MysQL, Nightly)
If you're reporting an issue with a maintenance branch, please include the revision number of your version of the maintenance
branch here.

Description

A detailed description of the issue, including the steps necessary for reproducing the issue.
You can also add attachments, including screen shots to help illustrate the issue.

Security Level

Controls the visibility of the issue; currently toggles between viewable by anyone or by just the committers and testers (and
the reporter of the issue).

JIRA Notifications

Whenever a Jira issue is modified, the issue's Reporter, Assignee, and any Watchers will receive an email notifying them of the change.
To become a Watcher on an issue, go to the issue and view it, and click on the "Watch It" link. Additional notification options include:

You can subscribe to filters in Jira and receive an email summary of the filter's contents at a time interval you specify. For
those interested in a daily summary of updates in the Sakai project in Jira, you should subscribe to the "Updated in Last 24
Hours" filter, and specify a 24-hour or 1-day time interval. (Note that the time of day when you subscribe is the time of day
when Jira will send the digest, so you probably want to subscribe to the filter early one morning.)
Jira can also send on-event notification emails, such as whenever an issue is created, updated, resolved, closed, etc. If you are
interested in receiving such emails, then please contact .jira-admins@collab.sakaiproject.org

Jira Spring Cleaning

Every year we should resolve out old issues. I plan to do this by the end of each April as this is the time when we update servers and
well it's Spring in some parts of the north. We default to closing out issues that haven't had any updates more than 3 years ago 3
years. So in 2018 we closed out anything older than 2015.

This is the JQL to search for these issues. Search for these
updatedDate < "2015/01/01" and project = sak and status in (Open,"Awaiting Review")

Then do a "Bulk Change"
Transition Issues

Select "Won't Fix" as a Resolution and add this comment (updating the date) :
Bulk closing issues that have not been updated since 2015 and earlier. Please reopen if this is still an issue and you have new
information or if this is a feature you'd like to still have consideration for.

mailto:jira-admins@collab.sakaiproject.org

	Sakai Jira Guidelines

